A Lie group structure for pseudodifferential operators
نویسندگان
چکیده
منابع مشابه
Pseudodifferential Operators on Manifolds with a Lie Structure at Infinity
Several interesting examples of non-compact manifolds M0 whose geometry at infinity is described by Lie algebras of vector fields V ⊂ Γ(M ;TM) (on a compactification of M0 to a manifold with corners M) were studied by Melrose and his collaborators for instance in [31, 34, 51]. In [1], the geometry of manifolds described by Lie algebras of vector fields – baptised “manifolds with a Lie structure...
متن کاملGroup and a Class of Pseudodifferential Operators
Let H be the general, reduced Heisenberg group. Our main result establishes the inverse-closedness of a class of integral operators acting on Lp(H), given by the off-diagonal decay of the kernel. As a consequence of this result, we show that if α1δ + f , f ∈ L 1 v(H), is invertible with respect to convolution over H, then (α1δ + f) −1 = α2δ + g, g ∈ L 1 v(H). We prove analogous results for twis...
متن کاملPseudodifferential Operators
The study of pseudodifferential operators emerged in the 1960’s, having its origins in the study of singular integro-differential operators. In fact, Friedrichs and Lax coined the term “pseudodifferential operator” in their 1965 paper entitled “Boundary Value Problems for First Order Operators”. Since that time, pseudodifferential operators have proved useful in many arenas of modern analysis a...
متن کاملIntegral Operators, Pseudodifferential Operators, and Gabor Frames
This chapter illustrates the use of Gabor frame analysis to derive results on the spectral properties of integral and pseudodifferential operators. In particular, we obtain a sufficient condition on the kernel of an integral operator or the symbol of a pseudodifferential operator which implies that the operator is trace-class. This result significantly improves a sufficient condition due to Dau...
متن کاملSymplectic inverse spectral theory for pseudodifferential operators
We prove, under some generic assumptions, that the semiclassical spectrum modulo O(~) of a one dimensional pseudodifferential operator completely determines the symplectic geometry of the underlying classical system. In particular, the spectrum determines the hamiltonian dynamics of the principal symbol.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Annalen
سال: 1986
ISSN: 0025-5831,1432-1807
DOI: 10.1007/bf01472130